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We investigate the control of discretization error in gradient-based aerodynamic shape op-
timization through the use of adaptive mesh refinement. Shape optimization is usually
performed on meshes with cell spacing and total mesh size determined a priori. In this
work, we adapt the mesh at each design iteration to improve accuracy and reduce opti-
mization setup time by eliminating the need to hand-craft a mesh that is suitable for all
design iterations. The approach makes dual use of the adjoint method – first in the com-
putation of the objective function gradient and second in the estimation of discretization
error. We study the convergence of error estimates and show vanishing and non-monotone
behavior when the objective function involves quadratic forms. A companion functional is
formulated to remove these deficiencies in a manner that does not increase the cost of the
simulation. We explore the use of progressive optimization, where the depth of mesh re-
finement is systematically increased as the design improves. The approach is demonstrated
on several model problems, including airfoil optimization and three-dimensional inverse
design for sonic-boom control. These examples are used to examine issues important for
the development of dynamic error control to improve automation and minimize cost.

I. Introduction

Apersistent challenge in the application of Euler and Navier–Stokes simulations in numerical optimization
is the accurate and efficient evaluation of the objective function, which is usually a functional of outputs

such as lift, drag or moments. In an effort to address this issue, we examine the use of output error
estimation1,2, 3, 4 with adaptive mesh refinement for the solution of aerodynamic shape optimization problems.

Output error estimates in simulation-based design offer several benefits. First, the ability to control
objective-function discretization error improves confidence in the optimized designs. Put another way, de-
sign modifications should yield valid improvements in performance instead of false trends due to discretization
error effects. Second, it eliminates the requirement of hand-crafting a sufficiently general mesh that is appro-
priate for all candidate designs. This is an important step toward making aerodynamic shape optimization
tools available to the broader aerodynamics community. Third, direct control over the level of discretization
error in the objective function allows the optimization procedure to begin on coarse meshes and progressively
adjust the mesh as optimality is approached. This is similar to the familiar grid-sequencing startup of flow
solvers and should significantly decrease the cost and turn-around time of the optimization.

Despite these benefits, there has been relatively little study of output error control in aerodynamic
shape optimization. The current work is motivated by the ideas of Lu and Darmofal,5 Rannacher6 and
Alauzet et al.7 on consistent approximations of functionals and gradients via the adjoint method.8,9, 10 The
basic idea is to ensure convergence of a sequence of discrete solutions to a local optimum of the continuous
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design problem.11,12 This can be accomplished by controlling both the cell-density (mesh size) and the
number of solver iterations in a way that minimizes the computational cost of the optimization. Dadone and
Grossman13 propose a progressive optimization strategy with partially converged flow and adjoint solutions,
but on uniformly refined grids. Recently, Hicken and Alonso14 developed a promising method for controlling
discretizaton errors in gradients directly, but they require approximation of higher-order derivatives.

In previous work, we developed separate adjoint-based frameworks for output error estimation and for
shape optimization. In error estimation, we extended the formulation of adjoint-weighted residuals to finite-
volume discretizations on embedded-boundary Cartesian meshes.15,16,17 The results show that the new
approach is accurate and efficient for routine use in practical settings, where the analysis of several thousand
flight conditions and vehicle configurations may be required. In shape optimization, we applied the adjoint
method to the computation of objective function gradients18 and developed a scalable framework19 to handle
large conceptual design studies with complex geometry.20,21

The purpose of this work is twofold. The first goal is to integrate our error estimation and mesh refinement
procedure into the shape optimization framework, thus eliminating the time-consuming step of hand-crafting
meshes and enabling the automatic construction of meshes tailored to each design iteration. The potential
benefits include a much shorter optimization setup time and improved accuracy; however, the wall-clock time
of each design iteration may increase relative to the traditional approach of using hand-crafted meshes of
equivalent size. Hence, the second goal is to examine the turn-around time. We investigate the convergence
of error estimates for various objective functions because these are key to evaluating design improvement.
Thereafter, a progressive strategy of systematically increasing the depth of mesh refinement is used to
examine issues hampering automation and efficiency of the optimization procedure. While our hope is to
apply error control to practical shape optimization problems in an engineering setting, this paper focuses on
understanding the behavior of this approach by investigating the performance of error control on relatively
simple aerodynamic examples.

In Section II we define the optimization problem and briefly describe the optimizer. In particular, we
discuss modifications that improve convergence of gradient-based methods in non-smooth optimization. In
Sections III and IV we give background on the evaluation of the objective function, the error estimate, and the
shape optimization framework. The salient aspects of sensitivity analysis on embedded-boundary Cartesian
meshes are highlighted and we discuss the integration of mesh adaptation into the optimization framework.
The effectiveness of the new framework with adaptive meshing is then demonstrated on a two-dimensional
problem in transonic flow. While we do not consider the control of discretization errors in the gradient, the
accuracy of the gradient is examined on the adapted meshes. In Section V we discuss the suitability of design
objective functions for driving mesh adaptation. We show that for objective functions in quadratic form,
e.g. least-squares inverse design, the error estimates vanish at the optimal solution, effectively stopping mesh
refinement. This difficulty is circumvented by introducing a companion functional from which we compute
error estimates in the design objective. The proposed approach is evaluated on several airfoil aerodynamic
optimizations. Our final test case is a three-dimensional off-body inverse design in supersonic flow with a
progressive optimization strategy.

II. Optimization Problem

The aerodynamic optimization problem we consider in this work consists of determining values of design
variables, X, that minimize a given objective function

min
X
J (X,Q) (1)

where J represents a scalar objective function defined by an integral over a region of the flow domain, for
example lift or drag, and Q = [ρ, ρu, ρv, ρw, ρE]T denotes the continuous flow variablesa. The flow variables
satisfy the three-dimensional, steady-state Euler equations of a perfect gas within a feasible region of the
design space Ω

F(X,Q) = 0 ∀ X ∈ Ω (2)

which implicitly defines Q = f(X).
The optimization problem is solved using the BFGS (Broyden-Fletcher-Goldfarb-Shanno) quasi-Newton

method in conjunction with a backtracking, inexact line search.22 We follow the suggestions of Lewis and

aThe notation assumes that X is a scalar to clearly distinguish between partial and total derivatives.
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Overton23,24 and use weak Wolfe conditions to terminate line searches. When the design space is not smooth,
a standard line search with strong Wolfe conditions may stall and prematurely terminate the optimization
because it may not find an acceptable steplength.

We use a discrete formulation for the computation of the gradient, dJ /dX, where the governing equations,
Eqs. 1 and 2, are first discretized and then linearized. In the following sections, we briefly describe the
methodology for evaluating the objective function and its gradient. Details are available in earlier work15,16,18

and for a complete description of the optimization framework see Ref. 19.

III. Evaluation of Objective Function with Adaptive Mesh Refinement

A. Flow Solution

Figure 1. Multilevel Cartesian mesh in two-
dimensions with a cut-cell boundary

Our goal is to compute a reliable approximation of the objec-
tive function J (X,Q) at each step of the optimization pro-
cedure. Let JH(QH) denote an approximation of the func-
tionalb computed on an affordable Cartesian mesh with an
average cell size H, which we call the working mesh. The
vector Q = [Q̄1, Q̄2, . . . , Q̄N ]T is the discrete solution vector
of the cell-averaged values for all N cells of the mesh and JH
is the discrete operator used to evaluate the functional. The
governing equations are discretized on a multilevel Cartesian
mesh with embedded boundaries. The mesh consists of reg-
ular Cartesian hexahedra everywhere, except for a layer of
body-intersecting cells, or cut-cells, adjacent to the bound-
aries, as illustrated in Fig. 1. The spatial discretization of
Eq. 2 uses a cell-centered, second-order accurate finite vol-
ume method with a weak imposition of boundary conditions,
resulting in a system of equations

RH(QH) = 0 (3)

The flux-vector splitting approach of van Leer is used. Steady-state flow solutions are obtained using a
five-stage Runge–Kutta scheme with local time-stepping, multigrid, and a domain decomposition scheme for
parallel computing.25,26,27

B. Error Estimate

To approximate the objective function error |J (Q) − JH(QH)|, we consider isotropic refinement of the
working mesh to obtain a finer mesh with average cell size h containing approximately 8N cells (in three
dimensions) and estimate the error in |Jh(Qh)− JH(QH)|. Our approach follows the work of Venditti and
Darmofal,28 where Taylor series expansions about the working mesh solution give the following expression
of the functional on the embedded mesh:

Jh(Qh) ≈ Jh(QH
h )− (ψH

h )T Rh(QH
h )︸ ︷︷ ︸

Adjoint Correction

− (ψh − ψH
h )T Rh(QH

h )︸ ︷︷ ︸
Remaining Error

(4)

QH
h and ψH

h denote a reconstruction of the flow and adjoint variables from the working mesh to the embedded
mesh, and the adjoint variables satisfy the following linear system of equationsc[

∂R(QH)

∂QH

]T
ψH =

∂J(QH)

∂QH

T

(5)

In Eq. 4, the adjoint variables provide both a correction term that improves the accuracy of the functional
on the working mesh and a remaining error term that is used to form an error-bound estimate. A difficulty
with the remaining error term is that it depends on the solution of the adjoint equation on the embedded

bIn this section we omit the functional dependence on X since the design variables are fixed during objective evaluations.
cFor details on the implementation of the adjoint solver see Nemec and Aftosmis.29
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mesh, ψh. We approximate ψh with a triquadratic interpolant, ψQ, and ψH
h with a trilinear interpolant, ψL,

from the adjoint solution on the working mesh.15 The remaining error term in Eq. 4 is used to estimate a
bound on the local error in each cell k of the working mesh

ek =
∑∣∣∣(ψQ − ψL)

T
Rh(QH

h )
∣∣∣
k

(6)

where the sum is performed over the children of each coarse cell and piecewise linear interpolation with
limiters is used for the flow solution variable. An estimate of the net functional error E is the sum of the
cell-wise error contributions to the functional

E =
N∑

k=0

ek (7)

The final expression for the variation of the corrected objective function due to discretization error is Jc±E,
where we assume no error cancellation in Eq. 6 and use the adjoint correction term in Eq. 4 to improve the
accuracy of JH . Verification and validation studies presented in Refs. 16, 30, 31, 32 and 33 on both academic
and practical problems indicate that this approach is the most effective way of estimating discretization errors
in complex goal-oriented simulations.

C. Strategy for Mesh Adaptation

In previous work,15,16 we described a tolerance-driven strategy of mesh refinement based on a user-specified
tolerance TOL for the objective function of interest. Starting from a coarse initial mesh, cells are flagged for
refinement as indicated by the ratio of ek to the allowable threshold TOL/N . The solution is computed on
the refined mesh and the adaptation cycles continue until the termination criterion E ≤ TOL is satisfied.

The basic idea is to equidistribute the cell-wise error as the adaptation advances. In other words, cells
are refined such that each cell of the final mesh contributes roughly the same amount to the total error.
Computational cost of the adaptation is reduced by using a“worst-cells-first” approach, where in the early
cycles only the highest-error cells are flagged for refinement and as a result relatively few cells are added to
the mesh. The mesh growth is increased as more cycles execute by adjusting the allowable threshold. This
avoids the problem of generating too many cells early in the adaptive process and then carrying these cells
through until the highest-error cells are addressed in the closing adaptation cycles. Note that one level of
refinement is added per adaptation cycle and coarsening is not considered.

In recent practice, we have adopted a slightly modified strategy that is robust in difficult simulations with
poor convergence. We rely less on the user-specified tolerance and instead specify the maximum number
of adaptation cycles and a cell budget, i.e. the maximum number of cells that the adaptation is allowed
to reach. In addition, the “worst-cells-first” approach is implemented by specifying a mesh-growth factor
for each adaptation cycle. A mesh-growth factor of eight corresponds to uniform refinement, while a mesh
growth factor of one indicates no refinement; a typical mesh-growth factor is two. Cells are sorted on their
level of error and a fraction of the highest error cells is refined to meet the specified growth. This gives
the user precise control over the number of cells in the mesh and therefore the allocation of computational
resources. Additional cost savings are obtained by solving the adjoint equation and computing the error
estimates up to and including the penultimate mesh but not on the finest mesh.

IV. Aerodynamic Shape Optimization

A. Gradient Computation

To compute the discrete gradient, dJH/dX, we recognize that a variation in X influences the computational
mesh M and the flow solution Q. We rewrite Eq. 3 to explicitly include the design variables and the mesh,
resulting in a system of equations

R(X,M,Q) = 0 (8)

where we omit the subscript H since all gradient computations are performed on the working mesh. The
design variables that appear directly in Eq. 8 involve parameters that do not change the computational
domain, such as the Mach number, angle of attack, and side-slip angle. The influence of shape design
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Figure 2. Sensitivity of face centroids (solid vectors) to perturbation of vertex V1 (dashed vector)

variables on the residuals is implicit via the computational mesh

M = f [T(X)] (9)

where T denotes a triangulation of the wetted surface. The gradient is obtained by linearizing the objective
function, J (X,M,Q), and the residual equations, resulting in the following expression

dJ
dX

=
∂J
∂X

+
∂J
∂M

∂M

∂T

∂T

∂X
− ψ T

(
∂R

∂X
+
∂R

∂M

∂M

∂T

∂T

∂X

)
(10)

where the adjoint vector ψ is given by Eq. 5.d

The evaluation of Eq. 10 was presented previously in Ref. 18. We briefly review the evaluation of the
partial derivative term ∂M

∂T
∂T
∂X in Eq. 10 because this term highlights the key differences between embedded-

boundary and body-conforming approaches when considering shape sensitivities.
An infinitesimal perturbation of the boundary shape affects only the cut-cells. Consequently, the mesh-

sensitivity term ∂M/∂T, which contains the linearization of the Cartesian-face areas and centroids, volume
centroids, and the wall normals and areas with respect to the surface triangulation, is non-zero only in these
cells. The crux in the evaluation of ∂M/∂T is the linearization of the geometric constructors that define the
intersection points between the surface triangulation and the Cartesian hexahedra. We explain the salient
steps of the linearization using the example shown in Fig. 2, where a Cartesian hexahedron is split into
two cut-cells by the surface triangulation. We require the linearization of the intersection points that lie on
Cartesian edges, e.g. point A, and also those that lie on triangle edges, e.g. point B. Focusing on point B,
its location along the triangle edge V0V1 is given by

B = V0 + s(V1 − V0) (11)

where s denotes the distance fraction of the face location relative to the vertices V0 and V1. The linearization
of this geometric constructor is given by

∂B

∂X
=
∂V0
∂X

+ s(
∂V1
∂X
− ∂V0
∂X

) + (V1 − V0)
∂s

∂X
(12)

A similar constructor is used for point A. Carrying this linearization through the various edge and face
operations of the cut-cell construction gives the result shown in Fig. 2 for the position sensitivity of Cartesian
face centroids given a perturbation at a single vertex (V1).

Note that the “motion” of the face centroids is constrained to the plane of the face. An advantage of
this formulation is that the dependence of the mesh sensitivities ∂M/∂T on the sensitivities of the surface
triangulation (∂V1/∂X in Eq. 12 and the term ∂T/∂X in Eq. 10) is determined on-the-fly for each instance
of the surface geometry. Put another way, there is no requirement for a one-to-one triangle mapping as
the surface geometry changes. This allows a flexible interface for geometry control based on tools such as
computer-aided design, as well as topology changes and refinement of the surface triangulation between
design iterations.

dEq. 10 represents a single component of the gradient vector for the general case of many design variables.
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B. Framework Integration

The goal of the initial integration of the error estimation and mesh adaptation procedure into the optimization
framework19 is to simply enable the use of adaptively refined meshes in each design iteration. This means
that during an evaluation of the objective function, a fixed, user-specified number of mesh adaptation cycles
is executed for each candidate design. The values of the objective and gradient from the finest mesh are
passed to the optimizer. This is very similar to the traditional, fixed-mesh approach, but instead of building
a single mesh at each design iteration we build a sequence of adapted meshes starting from a coarse baseline
mesh. Since the mesh is custom-built for each design, we avoid meshing artifacts from previous designs.
This is especially important in problems where changes to the geometry or freestream conditions generate
very different flowfields, e.g. shocks and other nonsmooth features.

In problems where the objective function of the optimization problem can also be used to drive mesh
adaptation, the adjoint variables associated with the the residual weights of the error estimate are the same
as those associated with the objective gradient. Hence, we reuse the adjoint variables computed for error
estimation directly in gradient evaluation, significantly reducing the cost of each design iteration because
only one adjoint solution is required. It is important to note, however, that some objective functions are not
appropriate for driving mesh adaptation. We return to this topic in Section V.

Overall, the integration results in essentially no changes to the framework architecture, except in the
step of evaluating mesh sensitivities (∂M/∂T in Eq. 10). The mesh linearization is implemented as a stand-
alone code, independent of the mesh generator and the mesh adaptation module. An advantage of this
implementation is that any mesh can be linearized, whether it comes from the mesh generator, as in the
traditional, fixed-mesh approach, or the mesh adaptation module. This allows us to compute gradients
for any mesh in the adaptation sequence. Furthermore, there are significant memory savings and speed
improvements since only cut-cells are involved in the mesh linearization. For example, we gain a factor of
three in memory reduction and a factor of four in speed relative to performing the mesh linearization within
the mesh generator. By minimizing memory usage, we maximize the number of design variables that can be
linearized in parallel.

C. Example
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Figure 3. Convergence history for the transonic
drag minimization problem

As a simple test of the integration of mesh adaptation
within gradient-based optimization, we consider transonic
flow around the NACA 0012 airfoil and seek to find an
angle of attack to minimize the drag coefficient. This is
a good model problem because small changes in the an-
gle of attack can cause large changes in shock locations,
requiring very different meshes as the optimization pro-
gresses. Many practical problems face similar issues, e.g.
lift-constrained drag minimization for transport aircraft,
where the wing shocks vary significantly as the optimiza-
tion progresses. Our purpose is to study the accuracy of
the objective function and gradient as the mesh is refined
and demonstrate the effectiveness of this procedure for
driving numerical optimization. The objective function is
J = Cd. The initial angle of attack is two degrees and
the freestream Mach number is 0.8.

Figure 3 shows that the optimization converges in seven iterations. Drag (objective function) converges
to just below 100 counts and the gradient is reduced by almost five orders of magnitude. The final angle
of attack is almost zero (−0.001◦). We start each design iteration from a coarse, essentially uniform mesh
that contains 1,726 cells, with only 12 cells intersecting the airfoil. The near-field mesh around the airfoil
is shown in Fig. 4. At each iteration, eight refinement passes are performed with a constant mesh growth
factor to obtain final meshes of roughly 25,000 cells. Figure 5 shows the final meshes at selected design
iterations. The refinement patterns clearly capture the design progression from a single, strong shock on the
upper surface, to an intermediate, asymmetric two-shock system, to a final symmetric, weaker two-shock
system at nearly zero angle of attack that minimizes drag.

Figure 6 shows the convergence of the error-estimation procedure at the first and third design iterations.
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Figure 4. Near-field view of the initial mesh around the NACA 0012 airfoil. Mesh contains ∼1,700 cells with
just 12 cutcells

Design 1
α=2º

Design 2
α=1º

Design 3
α=-0.53º

Design 5
α=-0.001º

Figure 5. Near-field mesh evolution corresponding to angle of attack changes from initial to final designs.
Meshes contain ∼25,000 cells (M∞ = 0.8)
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Figure 6. Mesh convergence of drag and its gradient at the first and third design iterations

Good convergence is observed for both the objective (Cd) and its gradient as the mesh is refined, with both
values leveling out on a mesh with about 10,000 cells. The computation of the gradient on all meshes is not
necessary in practice; we perform this computation here to examine the quality of the gradient on the coarse
meshes. Figure 6 shows that the objective function is well converged over the last two mesh refinements. For
this case, the gradient convergence rate is similar to the objective function and its sign is predicted correctly
even on the initial mesh. Recall that the current error estimate is not targeting the gradient as an output of
the simulation. This would require additional, higher-order terms.14 Convergence of the objective function
error estimate is shown in Fig. 7. The error has decreased by over two orders of magnitude for each design
and is smoothly decreasing in all adaptation cycles. The reduction in error as the optimization progresses is
likely due to weaker shocks, which is reflected by the decreasing drag values (recall Fig. 3).
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Figure 7. Mesh convergence of error estimate for drag at selected design iterations

V. Objectives in Quadratic Form

In practical optimization problems we frequently use objective functions that involve quadratic terms.
For example, a term such as (CL − C∗L)2 can be added to the objective function as a penalty to specify a
target lift coefficient, C∗L, for lift-constrained drag minimization problems. Inverse design problems use a
similar formulation, where the objective function is specified as an integral of squared differences between
the working variable and its target. When such objective functions are used in output error estimation,
the computed error estimates vanish as the working variable approaches its target, e.g. as CL → C∗L. This
is because the right hand side of the adjoint equation, Eq. 5, is a derivative of the objective. Hence, the
right hand side contains a linear term of the difference between the working variable and its target, e.g.
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2(CL − C∗L), which approaches zero as the working variable approaches the target. This causes the adjoint
variables to vanish, yielding poor estimates of the correction and error terms in Eq. 4, and terminating mesh
refinement.

1 2 3 4 5 6
Design Iterations
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10-6

10-4
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100

Objective
Gradient

Figure 8. Convergence history for the transonic
lift-matching optimization

An additional problem is that mesh convergence of
the error estimate can be strongly non-monotone because
the working variable may come closer to or drift farther
from its target value as the mesh is refined during a de-
sign iteration. This may influence the quality of mesh
refinement and consequently the accuracy of design anal-
ysis. Moreover, schemes that automatically adjust the
mesh refinement level depending on the ratio of design im-
provement to the error estimate perform better when the
error estimate converges smoothly. Similar observations
have been made by Lu.34 Rannacher6 discusses formula-
tions for least-squares functionals in goal-oriented finite-
element methods that avoid these difficulties.

To demonstrate, we modify the NACA 0012 airfoil
problem of the previous subsection to find an angle of
attack to match a target lift coefficient for an objective
function in quadratic form: J = (Cl− 0.55)2. The target
lift coefficient of 0.55 is achieved at roughly two degrees. The initial angle of attack is zero. We use the
initial mesh shown in Fig. 4 and specify nine adaptation cycles for each design iteration. The final meshes
are very similar to those shown in Fig. 5. The optimization converges in six design iterations as shown in
Fig. 8.

The key plot is Fig. 9, which shows convergence of error estimates with mesh refinement at selected design
iterations. The error estimates are well behaved over the first two design iterations, which is expected since
the difference between the current lift and target lift is relatively large in early design iterations. The third
design iteration shows non-monotone behavior. For this design, lift converges from above and happens to
come very close to the target lift value on the seventh adaptation cycle. This causes a dip in the error curve
down to ≈ 10−5. Thereafter, lift continues to converge to a value just below the target lift, which causes the
error estimate to increase over the last two adaptation cycles because the difference (Cl − C∗l ) is increasing
on the last two meshes. On the final (sixth) design iteration, the error estimate vanishes on the finest mesh
because the target lift is matched, falsely indicating that no further mesh refinement is required.
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Figure 9. Mesh convergence of the error estimate for the lift-matching objective function
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Figure 10. Objective function history for lift-matching
optimization with and without error-control functional

Recall that the drag error estimates converge
smoothly for all designs with no numerical artifacts
(see Fig. 7). This suggests a possible remedy for
objective functions with quadratic terms. We pro-
pose to use a “companion functional” based on the
outputs in the expression of the objective function
for error-control and mesh refinement. We formulate
the error-control functional such that the right hand
side of the adjoint equation, Eq. 5, does not van-
ish when the optimal design is reached. Moreover,
in ideal circumstances, the convergence of error-
estimates of the companion functional is monotonic
and this functional robustly drives mesh refinement
to obtain reliable estimates of the objective function.
To estimate errors in the objective, we propagate
the error estimates from the companion functional
through the objective function expression.

We note that it is quite easy to arrange the computations in each design iteration such that there is
no additional cost due to the error-control functional. This is because in our strategy for mesh adaptation
(recall Section III-C), we do not solve the adjoint equation and do not estimate the error on the finest mesh,
instead we conservatively use the estimate from the penultimate mesh. Hence, the error-control functional
is used on all but the finest mesh, where we swap out the error-control functional for the design objective.

We give a concrete example using the lift-matching optimization discussed above. For the objective
function J = (Cl − 0.55)2, we use Cl as an error-control functional, JEC. The error in Cl, denoted by ε, is
used to compute a conservative estimate of the objective function error as follows:

J = ((Cl ± ε)− 0.55)
2

(13)

≤ (Cl − 0.55)2 ±∆ (14)

where
∆ = |2(Cl − 0.55)ε|+ ε2 (15)

When the difference between the current and target Cl is large, then the first term of the error expression
dominates, but at optimality only the second term is non-zero.

We rerun the lift-matching optimization using JEC = Cl, i.e. we adapt the mesh and estimate errors in
the objective function through use of Cl, and Eqs. 14 and 15. Figure 10 compares the objective function
history between the original run, as shown in Fig. 8, and the new approach with the error-control functional.
The new approach improves convergence of the design objective in almost all iterationse. Lastly, in Fig. 11(a),
we show mesh convergence of the error estimate obtained from Eq. 15 through the penultimate adaptation
cycle. We observe no numerical artifacts – the behavior of the error estimates is now very similar to that in
the drag minimization example shown in Fig. 7. In Fig. 11(b), we extend the computation to the finest mesh
and compare the convergence of the error estimates for the final design of the optimization. The plot shows
the original error estimate (E) that vanishes on the finest mesh (replot of blue-triangle line from Fig. 9), the
error estimate in JEC = Cl denoted by ε, and the corrected error estimate for the design objective computed
via Eq. 15 denoted by ∆. The corrected error estimate decreases smoothly with mesh refinement.

Overall, the basic examples demonstrated so far indicate that output error estimates and adaptive meshing
are effective in driving numerical optimization. The adapted meshes provide a reliable estimate of the
objective function and gradient at each design iteration, resulting in good convergence of the optimizer. We
also carefully verified the convergence of objective-function error estimates. These are important for not only
reliable mesh adaptation but also dynamic error control during optimization when determining if a design
improvement exceeds the level of discretization error on a given mesh. We now turn to a three-dimensional
shape optimization problem, where these issue are examined further.

eImprovement in the first two iterations in Fig. 10 is not expected since the error estimate for the design objective is accurate
when Cl 6≈ C∗l .
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Figure 11. Mesh convergence of the objective function error estimate with error-control functional

VI. Results

We consider an inverse-design model problem with an off-body functional. Recent efforts in sonic-boom
control20,35,36 have explored shaping a vehicle by prescribing a desired pressure signal in the flowfield some
distance away. Figure 12 outlines the basic approach. As shown in the sketch, the domain is separated into a
near-field region close to the body, and a far-field region primarily concerned with atmospheric propagation
of the signal. In the near-field, three-dimensional effects are important in the composition of the pressure
signal, while in the far-field the body can be considered axisymmetric, and the chief concerns are wave
propagation and atmospheric signal distortion. The computational domain considers the near-field region,
and a designer prescribes an off-body pressure signature with desirable characteristics. The optimizer seeks
a shape that generates this signal by minimizing an objective function of the form

J =
1

p2∞

∫
(p− ptarget)2dS (16)

Figure 12. Illustration of domain decomposition
for inverse-design in sonic-boom control

While Eq. 16 drives the design, this formulation is
a clear example of the type of quadratic functional dis-
cussed earlier in Section V and is inappropriate for driving
mesh adaptation. Specifically, the derivative of this ob-
jective contains the factor (p− ptarget) and, as optimality
is approached, the difference between the signature of the
current design and that of the target will vanish causing
the adjoint to vanish as well. We therefore drive mesh
adaptation with an error-control functional that seeks to
accurately predict the pressure along the sensor:

JEC =
1

p2∞

∫
(p− p∞)2dS (17)

While the error-control functional is still in quadratic
form, its derivative does not vanish because ptarget 6= p∞
by construction. Moreover, the error estimate computed
for Eq. 17 is a good approximation of error for Eq. 16
because they both have the same dependence on local
pressure. Previous verification and validation studies
have demonstrated detailed mesh convergence results for
Eq. 17 and showed smoothly decreasing estimates of discretization error.20,30 Thus our solution strategy uses
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Figure 13. Left: Initial and target shapes used in the supersonic inverse-design problem. Ten design variables
control the radius of the body at various streamwise stations. Right: Initial and target pressure signals at a
distance of h/L = 2, M∞ = 1.5, α = 0◦

the target-matching functional, Eq. 16, to drive the shape optimization and Eq. 17 to control discretization
error through mesh adaptation.

To demonstrate the methodology, we construct an inverse-design problem with an attainable solution
and verify that the optimization can recover this solution from an arbitrary starting shape. We consider a
slender, axisymmetric body in M∞ = 1.5 supersonic flow at 0◦ incidence adopted from Wintzer and Kroo.21

Ten design variables control the radius of the body at various stations along its length. Figure 13 shows
the shape that is used to generate the target pressure signal. Above the target shape, the figure shows the
starting design which was obtained through gross perturbation of the design variables. On the right, the
figure shows the pressure signals produced by these bodies measured at a distance of two body-lengths below
the centerline (h/L = 2).

We consider two strategies for recovering the target shape. The first is a straightforward inverse design
in which a fixed number of mesh-adaptation cycles are performed within each design iteration, similar to the
airfoil demonstrations in Sections IV and V. The second example explores a basic progressive optimization
strategy aimed at understanding issues associated with progressive design and giving insight into its potential
for computational savings.

A. Shape Optimization with Fixed-Depth Adaptation

Figure 14 gives an overview of the optimization when using a fixed number of mesh adaptations for the
evaluation of the objective function and gradient. The plot on the left shows convergence of both the
objective function and gradient, while that on the right shows recovery of the target pressure signature by
the final design.

Since the target is attainable, deep convergence of the objective function is expected, and the left frame of
Figure 14 confirms this behavior. The abscissa of this plot measures cost by the total number of evaluations
of the design objective and gradient (flow and adjoint solves on the finest mesh). Symbols on the lines
indicate successful line searches. For this example with ten design variables, the objective function decreased
by over six orders of magnitude in just over 50 iterations. Similar convergence behavior is seen in the design
gradient. Optimization reduces the L2-norm of the design gradient by approximately half as many orders of
magnitude as the objective function. Convergence is less smooth than for the objective function, but some
noise is expected since the optimizer is performing inexact line searches with weak Wolfe conditions.

The adapted meshes in these simulations contained roughly 650,000 cells. To understand the computa-
tional cost of each design iteration, recall that each objective and gradient evaluation requires one flow and
one adjoint solve, respectively, on the fine mesh. The cost for these solves is roughly equivalent to twice the
cost of a single flow simulation. Additionally there is some cost for producing the adapted mesh. Adaptation
is driven using the error-control functional JEC, which integrates pressure along the sensor via Eq. 17. The
adaptation procedure constructs the mesh to minimize discretization error in this integral. The role of the
adjoint solve during meshing, however, is limited to guiding mesh refinement, and this secondary adjoint
need not be solved on the fine mesh. With mesh growth factors of roughly two at each adaptation cycle, the
total cost for a design iteration is slightly over three times that of a single flow solve on the fine mesh.

Figure 15 shows the adaptive mesh on the initial and final design iterations. While both meshes stem from
the same background mesh of 11,000 cells, after seven adaptation cycles, they have grown to ∼650k cells and
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Figure 14. Left: Convergence history of the objective function and gradient for the supersonic inverse-design
problem. Right: Pressure signature of the initial design, final design and optimization target measured at a
distance of two body lengths (h/L = 2.0) off the centerline. Symbols are used to help distinguish the final
design and target

are very different. As outlined in Subsection III-C, mesh adaptation is governed by a growth-based strategy
which addresses the worst-cells-first at each adaptation cycle. Since the growth schedule and adaptation
depth are fixed, the final mesh size is roughly constant throughout the entire design. Under this premise,
the net effect of adaptation is to re-grade the cell densities within each design, tailoring the mesh to produce
accurate pressures along the sensor with a fixed-cell budget. The snapshots of the mesh in Fig. 15, from the
first and last design iterations, show the clear advantage of this approach. While the initial mesh focuses
on accurately propagating the shocks and expansions emanating from the body, the final mesh is chiefly
concerned with propagating a much smoother flowfield and dedicates more cells to accurately resolving the
smooth, non-linear, near-body flow and accurately integrating along the sensor.

Initial Shape Final Shape

Figure 15. Adapted meshes on the initial and final design for 3D inverse design example with an off-body
objective function using a fixed-depth adaptation strategy. All meshes contain ∼650k cells and are constructed
with 7 levels of adaptive refinement. M∞ = 1.5, α = 0◦
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B. Progressive Optimization

In the preceding example, all design iterations use the same level of adaptive mesh refinement. An obvious
extension of this fixed-depth strategy is to adjust the level of refinement so that the mesh is progressively
refined as the design advances, reducing the required computational effort during early design iterations.
We perform an exploration of a progressive approach beginning with four levels of refinement and carrying
through to seven levels of adaptation as we approach the target. The immediate goal is to uncover issues
associated with the mechanics and cost of progressive optimization, and to use this understanding as we
move toward development of an automated and efficient algorithm. From a cost standpoint, we wish to
minimize the number of design iterations performed on the finest mesh. This exploration follows a simple
strategy which lets coarse designs advance as far as possible and then uses those designs to initiate a new
optimization seeded with the “best” design so far. At the outset, it is clear that this naive approach will not
be as efficient as possible since we are essentially guaranteed to oversolve on the coarse grids. In other words,
we do not use the ratio of design improvement to the error for determining transitions to the next level of
refinement at this stage. In addition, the optimization resets the Hessian matrix with each progression in
the refinement level and some subsequent design iterations are needed to rebuild this matrix.

Figure 16 summarizes the main results of this study. The frame at the left shows convergence of the design
objective, Eq. 16, while at the right we see this convergence graphically as the off-body pressure recovers
the target profile. Comparing these results with the fixed-depth example in Fig. 14 we see essentially
the same depth of both objective convergence and target recovery. In the final sequence (7 adaptations),
the optimization exited when updates to the design variables became smaller than a specified minimum.
Reduction in the L2-norm of the gradient was similar to that observed in the earlier example (Fig. 14) and
is omitted for clarity.

Tracing the convergence history, notice that each level of progressive refinement is accompanied by a
small increase in the value of the objective function. This is an indication that J is converging from below.
We shall show shortly that this is not necessarily an indication of oversolving on a particular coarse mesh,
but is rather caused by discretization error on the coarse mesh affecting the evaluation of the objective
function. Given that this example evaluates a functional located two body-lengths away, it is not surprising
that coarse meshes prematurely erode peaks and valleys in the pressure field as they propagate to the sensor.

Figure 17 gives more insight into the design evolution by presenting each stage of the optimization. This
figure summarizes the 4 stages of progressive optimization by showing the initial and final designs for each
stage along with their adaptive meshes (colored by pressure coefficient). Approximate mesh sizes are as
follows: 4 Adaptations ∼130k cells, 5 Adaptations ∼230k cells, 6 Adaptations ∼350k cells, 7 Adaptations
∼650k cells. The right column shows the pressure signals measured at the sensor.
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Figure 16. Left: Objective function convergence using progressive optimization from 4 to 7 levels of adaptive
refinement. Right: Evolution of the off-body pressure signal used by the objective function, J , in Eq. 16 from
the initial design (4 levels of adaptation) to the final design (7 levels of adaptation)
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The convergence history in Fig. 16 initially seems to indicate that most of the “work” was accomplished
on the mesh with six levels of adaptation. While this is true for the computational effort, it is clear from the
top row of Fig. 17 that the most radical reshaping of the body and cleanup of the pressure signal occurred
during the first 15 iterations of the optimization on the coarsest adaptive mesh. This phase reduced the
peak-to-peak signal by over a factor of five while reducing the objective function to less than 1% of its initial
value. Despite mesh coarseness, the pressure signal of the initial design on the 4-level mesh compares well
with that in Fig. 14 computed with 7 levels of adaptation. The first phase of adaptation stalled when the
gradients pushed a design variable to violate its lower bound on the radius of the body near the pointed tip.
This behavior is not surprising since the geometry at the first two design stations is substantially smaller
than the cells in the coarse mesh.

The second phase of the objective convergence took place on a mesh with ∼230k cells and five levels of
mesh adaptation. The convergence history in Fig. 16 shows a marked jump in the value of the objective
when moving to this mesh, which is in part due to the increase in mesh resolution near the nose. Referring
to Fig. 16, convergence on this mesh appears slow and reductions in the objective function are not dramatic.
However, the second row of Fig. 17 gives more insight. The overall shape has progressed meaningfully. The
body is smoother overall, and the very front of the signal has made substantial progress toward the objective
at scales not resolvable on the previous mesh. This phase also terminated due to bounds violation in the
under-resolved region near the tip.

With an additional level of adaptation, meshes in the third phase of design are ∼350k cells, with design
iterations around half the cost of those in the fixed-depth example. The convergence history shows that this
phase reduced the objective function by two orders of magnitude over the course of approximately 60 trial
designs. In comparison with the convergence rate of the fixed-depth adaptation performed earlier, the design
gradients on this mesh are less accurate, which may be a factor in the rate of design evolution. Nevertheless,
the design progressed very well in this phase and the pressure signal of the final design is on top of the target
to plotting accuracy. Upon closer inspection, the case is not so clear. As shown in the enlarged view in the
third row of Fig. 17, the waviness at the body’s tip is still substantially different from the smooth tip of the
target. In fact, it is clear that the optimizer is manipulating discretization errors to prematurely match the
target signal with a false design. Re-evaluating the final design from the 6-level adaptive mesh to the finest
mesh (7 adaptations) exposes the error on the previous mesh. From this initial design the optimizer recovers
the actual target shape with about 12 objective and gradient evaluations.

This example brings up several points in understanding the potential for cost savings through progressive
optimization. First and foremost is the degree to which allowable mesh growth impacts the cost arguments.
In this example with growth factors around two, the design iterations on the penultimate mesh were about
half as costly as those on the finest mesh. Iterations with the finest mesh started from a candidate design
that was very close to the target, and still required about 1/3 as many objective and gradient evaluations
as the fixed-depth design. Under these circumstances, the mesh growth factor of two caps the potential
payoff for progressive optimization at around a factor of two faster than the fixed-depth approach. Larger
mesh growth factors permit higher savings and perhaps factors of four are achievable. However the example
presented here shows that as long as shape parameters operate at scales not well resolved by the coarse
meshes, a certain number of fine grid iterations are unavoidable. With this being the case, it is of interest
to reduce the cost of the design iterations on the finest mesh as much as possible. For example, as the
magnitude of design updates shrinks, it may be possible to re-use the adapted mesh for nearby designs on
the finest mesh, thereby reducing or even eliminating the cost of the mesh adaptation procedure.

VII. Summary and Future Work

A framework for gradient-based aerodynamic shape optimization has been developed with the capability
to perform output error estimation and adaptive mesh refinement in each design iteration. The examples
demonstrate that this a promising approach to enhance the accuracy, efficiency and automation of simulation-
based design. They also highlight important points for designing an automated error-controlled method for
optimization.

We showed that, without safeguards, the optimizer exploits discretization errors that lead to false designs.
Moreover, there are significant costs associated with oversolving on coarse meshes. These not only include
the useless design trials on the coarse mesh, but also the fine mesh design iterations required to “undo” the
false progress. This penalty becomes more severe when oversolving occurs on mid-level meshes, requiring
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additional iterations on ever finer meshes to correct the design. An additional penalty of oversolving is the
contamination of the Hessian matrix. In our examples, the optimizer resets the approximate Hessian with
each increase in adaptation depth. This is a conservative approach; however, it requires additional design
iterations at the beginning of each phase to re-discover the design landscape.

An important metric for determining the acceptance of a design update, and whether to move to the next
adaptation level, is the ratio of design improvement to the error estimate. We examined the convergence
of objective-function error estimates in the presented examples. We found that for objective functions in
quadratic form, a modification is required to avoid vanishing and non-monotone behavior of the estimates.
There are several algorithms in the literature that automatically adjust the depth of mesh refinement de-
pending on the design metric and attempt to safeguard Hessian updates as the design moves from mesh
to mesh. Doing this efficiently for practical problems, without a priori knowledge of convergence of the
objective function from below or above, and in conjunction with inexact line searches remains the subject of
future work.
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